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The basic assumptions and limits of the B JR dynamical theory of electron diffraction are discussed. 
In the two-beam approximation the absorption coefficient derived in the B JR theory takes account of 
the thermal diffuse scattering and of the weakly excited beams, but neglects their dynamical interaction 
with the two strong beams. This seems to be a suitable approximation for real crystals with defects and 
grain boundaries as in polycrystalline foils. For thick perfect single crystals a better approximation may 
be obtained by removing the weak beam term from the absorption coefficient, leading to the results of 
Hall & Hirsch. In both cases the same simple expression for the temperature dependence of the two 
strong beams is obtained for anomalous transmission, being in good agreement with experiment. 

1. Introduction 

In a series of papers (Boersch, Jeschke & Raith, 1964; 
Glaeser & Niedrig, 1966; Albrecht & Niedrig, 1968) a 
dynamical theory of elastic electron scattering in 
crystals (BJR theory) including thermal diffuse scat- 
tering has been outlined, based on a phase grating 
approximation (defined below) using complex atomic 
scattering amplitudes for elastic scattering. Because 
this theory has been subject to critical discussions by 
some authors (Fukuhara, 1965; Cowley & Moodie, 
1970) the basic assumptions and limits of the BJR 
theory will be discussed from a new angle, especially 
the physical meaning of the absorption coefficient 
derived in the two-beam formulation of the B JR 
theory, and its temperature dependence. 

For simplicity we restrict all the following calcula- 
tions to crystals of only one kind of atom and with a 
cubic primitive unit cell, but the calculation can easily 
be extended to other crystals. 

In the usual treatment of the dynamical theory of 
electron diffraction in crystals (Bethe, 1928) the Fourier 
representation of the real periodic potential of the 
crystal is introduced into the SchrSdinger equation. 
The wave function within the crystal is represented by 
a superposition of plane waves. The amplitudes of 
these plane waves are determined by the real Fourier co- 
efficients of the potential. In the two-beam approxima- 
tion of this treatment all weakly excited beams are set 
equal zero except the primary beam and one strongly 
reflected, consequently no absorption within the two- 
beam system arises. Any diminution of the number of 
electrons within the two-beam system, e.g. by weak 
beam effects or thermal diffuse scattering, must be 
considered by formally introducing an imaginary part 
of the potential (Moli~re, 1939) and by additional 
calculations (Yoshioka & Kainuma, 1962; Gjonnes, 
1962, Hall & Hirsch 1965a, b; Kainuma & Yoshioka, 
1966; Ohtsuki, 1966). 

Other treatments of the dynamical theory deal with 
the successive scattering of the incident plane wave by 
the set of plane gratings of atoms within the crystal. 

This was done by Cowley & Moodie (1957) and Howie 
& Whelan (1961), and in a different way by Boersch, 
Jeschke & Raith (1964). In the calculation by Boersch, 
Jeschke & Raith each single layer of atoms in the crystal 
is regarded as a two-dimensional phase grating, which 
is derived by projecting the phase shift suffered by the 
electron wave passing through the atomic layer onto 
the plane formed by the centres of these atoms. In 
this treatment which we will call the 'phase grating 
approximation', the amplitudes of the scattered waves 
from every atomic plane are determined by complex 
atomic scattering amplitudes f~. In the two-beam ap- 
proximation this leads to an absorption within the 
two-beam system, contrary to the results of the Bethe 
treatment. As will be shown later, this absorption takes 
account of the maximum limit of absorption due to 
weak-beam effects in the case of very thin crystals or 
thick imperfect crystals and, for T> 0, of the thermal 
diffuse scattering. 

These different results indicate that the two-beam 
formulae derived from the SchrSdinger equation 
(Bethe formulation) and from the phase grating treat- 
ment (B JR), although both are applied to a two-beam 
system, are not equivalent but represent two different 
approximations, the first completely neglecting elastic 
scattering absorption phenomena, the second yielding 
a maximum limit for the absorption due to elastic 
scattering. We will discuss the phase grating treatment 
for two different cases: (a) a thick perfect crystal,* (b) a 
thin perfect crystal and a thick crystal with imperfec- 
tions. The results will be compared with those of Hall 
& Hirsch (1965a) derived from the Bethe formulation 
introducing additional scattering processes. 

2. Scattering amplitudes and lattice potential 

At first we will give some definitions of the quantities 
describing electron scattering in crystals. 

The periodic potential in a crystal is real provided 

* Only this case has been considered in the paper by Fuku- 
hara (1965). Cowley & Moodie (1970) also only consider a 
perfect crystal (thick and thin) in their paper. 
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that inelastic scattering is neglected. The Fourier coef- 
ficients V~ of the real lattice potential of a primitive 
cubic crystal are exactly proportional to the atomic 
scattering amplitudes in the first Born approximation, 

Vs. .~f f  . (1) 

f~ is always real for atoms with spherical symmetry. 
The amplitudes of the waves scattered by a single 

unit cell, e.g. the case of a cubic primitive crystal, are 
equal to the correct, generally complex scattering 
amplitudes fs: 

fg=f'~+iJ"g' . (2) 

Any calculation more accurate than the first Born 
approximation gives such complex atomic scattering 
amplitudes (Hoerni & Ibers, 1954; Raith, 1968) by use 
of the real atomic potential. 

In a two-dimensional cross grating scattering prob- 
lem the amplitudes of the scattered waves are given by 
the Fourier coefficients qs of the complex object func- 
tion. These Fourier coefficients are related to the 
correct atomic scattering amplitudes fg by 

2 
q~ = i ff-~A fs (3) 

(Howie & Whelan, 1961; Boersch, Jeschke & Raith, 
1964). In this description the primary beam (g=0) has 
the amplitude (1 +q0); 2 is the electron wave length, 
and FA is the area per atom in the cross grating. As 
was stated by Boersch, Jeschke & Raith (1964, pages 
439 and 451) there exists no linear relation similar to 
equation 1 between fg and the real Fourier coeffi- 
cients, V s, of the potential, except in the approxima- 
tion of very weak phase objects (first Born approxima- 
tion).t 

3. Elastic scattering by a phase grating of  atoms 

A crystal can be regarded as a system of cross gratings 
with atoms at the lattice points. Neglecting inelastic 
scattering these atoms can be regarded as phase objects 
for the elastic scattering of electrons. Therefore the 
cross gratings are phase gratings. 

As a consequence the incident intensity is preserved 
after scattering. Observing this intensity conservation 
for the scattering of one or two incident electron waves 
by a single phase grating the following relations can be 
derived: 

22 .,, 1 
- 2  Re q0 = ~ J 0  = E lqh[2 = atot (4) 

h FA 
and 

22 
qhq h--g ( 5 )  - 2  Re qs= --~-af ~ = Re I~ * 

h 

t It is possible to construct a complex potential by using 
equation (1) for the complex quantities fg. But this has only a 
formal meaning for the two-beam approximation calculated 
from the Schr6dinger equation, and this has not been done by 
BJR (1964), although Fukuhara (1965) has said that it was; 
the remark of Fukuhara on this point is incorrect. 

The sum has to be taken for all reflexions h. Equations 
4 and 5 (similar equations are implicitly included in 
the calculations of Fukuhara, 1965) show that the 
imaginary part of the atomic scattering amplitude for 
elastic scattering is related to the amplitudes of all 
scattered waves. Equation (4) corresponds to the optical 
theorem (Feenberg, 1932); equation (5) is equivalent to a 
relation derived by Glauber & Schomaker (1953). atot 
is the total elastic scattering cross-section. 

Now we regard two incident beams with equal am- 
plitudes 1/[/2 and opposite or equal sign. Again observ- 
ing the intensity conservation and with the help of 
equations (3)-(5) we obtain for T> 0 for the total scat- 
tered intensity by a single plane grating 

ilg.2 22 
= _ _  ,, ,, Is,wB Is,TO s + . (6) FA ( f  o -T- f s exp [ - M s ] ) =  1,2 a,2 

Equation (6) represents the total intensity elastically 
scattered by a single phase grating from an incident 
Bloch wave (index 1 or 2, see §4), consisting of two 
plane waves, into thermal diffuse background, 1,2 I s,TDS, 
and into all Bragg reflected beams (mainly weak 
beams), 1,2 Is ,wB. The upper sign always belongs to Bloch 
wave 1. The two terms on the right side of equation 6 
are given by 

]g.TDSl'2 = I0,TDS~ A I g , T D S  

= Z {1 qh[2(1 --exp [-- 2Mh] ) -T- Re qhq~-s 
h 

x (exp [ -  M~]-  exp [ - ( M  h + Mh_g)]} (7) 
and 

1,2 ~ 1 Is,wB Z I qh exp ( -- Mh) -T- qh-s exp (-- Mh_g)] z. (8) 
h 

The factors exp ( - M )  are the Debye-Waller-factors 
(Debye, 1914) describing the diminution of amplitudes 
of the scattered beams by thermal diffuse scattering 
(TDS). 

The TDS term in equation (6) given by equation (7) is 
due to phonon scattering and will be incoherent to the 
two-beam system, whereas the weak beam term [equa- 
tion (8)] is coherent. Therefore when regarding the 
successive scattering by the atomic layers in the crystal 
the TDS term will lead to an absorption, whereas the 
weak beam term causes absorption only for special 
cases discussed in the following section. 

4. Dynamical two-beam case 

The dynamical case of diffraction in crystals in the 
phase grating approximation can be derived by cal- 
culating the successive scattering of the electron waves 
by the set of plane gratings of atoms within the crystal.* 

* As was stated by BJR (1964, p. 451) the description of the 
successive scattering by the plane gratings within a crystal in 
terms of the Fraunhofer treatment is only an approximation. 
But for 22 .~F.4 the distribution of amplitudes behind a phase 
grating can be described by the complete system of all scattered 
plane waves and then also includes Fresnel diffraction oheno- 
mena (Jeschke, Raith & Zorn, 1966). 

A C 26A - 8* 
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We regard a system of two strong beams* selected by 
the Bragg-equation for a suitable crystal orientation. 
For any crystal thickness this system can be divided 
into two Bloch waves (1 and 2) each consisting of two 
plane waves with equal amplitude and opposite (1) or 
equal (2) sign. Taking the Bloch waves to be indepen- 
dent,t  we treat the weak beams and the thermal diffuse 
scattering from each plane grating as a perturbation di- 
minishing the intensities of the Bloch waves. Applying 
equations (6)-(8) to each plane grating we easily obtain 
absorption coefficients 

/z~.2 =/t0~A/t~ (9) 

for the intensities of the two Bloch waves (/~0" normal 
or mean absorption coefficient; /z~a: anomalous ab- 
sorption coefficient). 

Calculating the two-beam case in this way we neg- 
lect the scattering from the weak beams into the strong 
beams. Strictly speaking we should also consider the 
incident weak beams previously scattered by the 
atomic planes above. This would reduce the weak- 
beam term in equations (6) and (8). By an n-beam cal- 
culation Goodman (1968) found art oscillatory be- 
haviour of all intensities with crystal thickness while 
the average intensities of both strong and weak beams 
were found to be independent of crystal thickness. 
This means that the intensity of the weak beams is peri- 
odicaUy scattered back into the two strong beams, and 
the weak beam term does not contribute to absorption for 
a thick perfect crystal.:I: We therefore can distinguish 
between two limiting cases: 

(a) For thick perfect crystal plates we have to re- 
move the weak-beam term from the absorption ac- 
cording to the above considerations in agreement with 
the treatment of Hall & Hirsch (1965a, b). The re- 
maining TDS-term [equation (7)] leads to the following 
absorption coefficient (after replacing the sums by 
integrals, see e.g. Kainuma & Yoshioka, 1966): 

12 /&:rDS =/~0, roDS -T- A/~, roDS 
=2NA2 ~ {[fs[2(1--exp [ -2Ms])  
-T- Refff*_g(exp [ - M ~ I - e x p  [ - ( M ,  + M,_g)])} 
x d ~ .  (10) 

Here g is the reciprocal lattice vector due to the strong 
reflection g, fs andf~_3 are the scattering amplitudes due 
to the scattering from the primary and the reflected 
beam into the direction corresponding to a scattering 
vector S. NA is the density of atoms. Equation (10) is 
equivalent to the result of Hall & Hirsch (1965a) 
which is an approximation of equation 10, replacing 
the complex va luesfby  the real valuesf  B derived from 
the first Born approximation. 

The effect of weak beams in this case will be re- 

* For simplicity we only consider the exact Bragg incidence. 
t This same assumption was made by Hall & Hirsch 

(1965a, b). 
:~ This differs from earlier opinions of the authors (B JR, 

1964). 

stricted to, for example, an alteration of the extinction 
distance of the two-beam system, which may be taken 
into account by using the additional potentials of 
Bethe (1928) as was recently shown by Meyer-Ehmsen 
(1969). 

(b) For small crystal depths less than one or two 
extinction distances for the strong beams the weak 
beams cannot fully build up. In this region of crystal 
thickness an effective absorption on the strong beams 
arises due to weak beams (Gjonnes, 1962; Hall & 
Hirsch, 1965b; Kainuma & Yoshioka, 1966). 

A similar effect is to be expected in large crystals 
with sufficient lattice defects and grain boundaries 
causing incoherent multiple scattering. This affects the 
dynamical interaction between the weak beams and 
the strong beams and may result in an additional ab- 
sorption for the two-beam system (Cowley, 1969). This 
was confirmed by n-beam calculations of Goodman 
(1968). 

We can assume that in polycrystalline foils these 
effects will strongly influence the effective absorption 
(Albrecht & Niedrig, 1968). The upper limit of the 
weak beam contribution to absorption can easily be 
calculated from equation (8) neglecting completely the 
dynamical interaction between weak and strong beams. 
We therefore obtain for this case the following ab- 
sorption coefficient from equation (6): 

l~.2=l, to~Altg=ZNA2(fo-T-f"g exp [ - M s ]  ) . (11) 

This absorption coefficient is identical with that used 
in the B JR theory for T > 0  (Bostanjoglo & Niedrig, 
1964; Glaeser & Niedrig, 1966; Albrecht & Niedrig, 
1968). As was shown above [equation (6)] it includes 
both thermal diffuse scattering and a limiting value for 
the weak beam scattering.* The experimental absorp- 
tion coefficient has values between those of equations 
(10) and (11.) 

5. The temperature dependence in the case of 
anomalous transmission 

In the preceding publications (Boersch, Bostanjoglo & 
Niedrig, 1964; Glaeser & Niedrig, 1966; Albrecht & 
Niedrig, 1967, 1968) the following temperature be- 
haviour of dynamical diffraction intensities from poly- 
crystalline foils was found experimentally: 

Ig(T,D)~Ig(O,D)  . exp ( - b g T D )  . (12) 

The temperature coefficient bg can be derived theoreti- 
cally from the absorption coefficient by 

O/t~ (13) 
b g -  6T 

* The result is identical with that obtained from the Bethe 
formulation of the two-beam case by formally introducing a 
complex potential with the help of equation 1 for the complex 
value fg. But such a derivation cannot be physically justified. 
On the other hand Cowley & Murray (1968) have shown that it 
is also possible to derive a complex periodic potential from a 
phase grating approximation describing the diffuse elastic 
scattering from a lattice with static disorder. 
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We will calculate this coefficient using the two lim- 
iting cases given above for fully developed anomalous 
transmission, i.e. for crystal thicknesses D, where the 
Bloch wave 2, because of its larger absorption coeffi- 
cient [equations (10) and (11)], is small compared with 
Bloch wave 1. This case has been experimentally in- 
vestigated by Boersch, Bostanjoglo & Niedrig (1964), 
Glaeser & Niedrig (1966), Albrecht & Niedrig (1968) 
and Jeschke, Niedrig & Ridder (1968). For simplicity 
we use the value of M for T> O (-- Debye temperature) 
being proportional to T (Debye, 1914): 

Ms~_ C~T . (14) 
with 

3h z 
C~ - 2kd~mO z (14a) 

(h,k: Planck's and Boltzmann's constant, d~: lattice 
spacing found from reflexion g,m: atomic mass). 

For the calculation based on thick perfect single 
crystals [case (a) §4] we use an approximation of equa- 
tion (10), which can be derived similarly to a method 
given by Hall & Hirsch (1965a): 

lt~,~DS~--2Ua2(1--exp [ -Ms]  ) Re ~fsf*_gd(2. (15) 

Equation (15) is a good approximation for materials of 
high atomic number. We can simplify equation (15) by a 
relation corresponding to equation 5 (Glauber & 
Schomaker, 1953) 

22J'~ = Re ~ f j * _  ~df2 (16) 

and obtain (Albrecht & Niedrig, 1968): 

lt~,TDS"2NA2f"~(1--exp [ -  Mg]). (17) 

Calculating bg from (17) we get 

~Iu~,TDS ~--2UA2f'~ C~r exp ( -Mg)  (18) b~,TDS . . . . .  6~- .... • 

Using the case (b) (more suited to imperfect crystals) 
we obtain from equation (11): 

b g -  d/~ --2NA2f~ C~. e x p ( - M g )  (19) 
~T 

We see that both limiting cases lead to the same 
temperature coefficient, which is identical to that 
derived in previous publications (Niedrig et al., 1964, 
1966, 1968). t This is due to the fact that the temperature 
dependence of the weak beam term of Bloch wave 1 
[equation (8)] is not very strong. However, this fact 
hinders the estimation of the weak beam contribution 
from measurements of the temperature dependence in 
the case of anomalous transmission. 

The calculated temperature coefficient b~ [equations 
(18) and (19)] is in good agreement with experiment 
(Albrecht & Niedrig, 1967, 1968; Boersch, Jeschke & 

? The identity becomes obvious using equation 14a and 
remembering that for the strong low order reflexions Mg is 
small, so that bg approximately becomes independent of 
temperature. 

Willasch, 1969). This indicates that the thermal dif- 
fuse scattering from the two strong beams (corre- 
sponding to the first two points of the list of Cowley & 
Moodie, 1969) is the main contribution to the temper- 
ature dependence. Other contributions, especially that 
of the inelastic scattering, seem to be small compared 
with the TDS (Boersch, 1947, 1948; Yoshioka, 1957; 
Whelan, 1965).* 

For single crystals it is possible to measure the 
temperature dependence of/z0 and Alzg separately from 
each other. This has been done by Watanabe (1965), 
Goringe (1966), and Meyer (1966) and Meyer-Ehmsen 
(1969) respectively. The results indicate that for per- 
fect single crystals of elements with low or medium 
atomic number (A1,Si, Cu, Ge) the weak-beam con- 
tribution in fact is small compared with TDS, corre- 
sponding to the limiting case (a). 

An n-beam theory considering all these possible ab- 
sorption phenomena certainly gives more information, 
but unfortunately can be evaluated only by the use of 
computers.]" On the other hand the B JR theory and 
especially its application to the temperature depen- 
dence of anomalous transmission gives simple rela- 
tions, which can easily and successfully be applied. 

6. Conclusions 

It has been shown that the absorption coefficient 
derived from the B JR dynamical theory of electron 
diffraction includes thermal diffuse scattering and a 
maximum limit of weak-beam scattering, neglecting the 
dynamical interaction between the weak beams and 
the two strong beams. This treatment has some signi- 
ficance for imperfect crystals. Removing the weak 
beam term from the absorption coefficient for the case 
of thick perfect-crystal plates the result of Hall & 
Hirsch for thermal diffuse scattering only is obtained 
as an approximation for f_+fB. In the case of anoma- 
lous transmission it has been shown that both models 
lead to approximately the same temperature depen- 
dence of the absorption coefficient, which is in good 
agreement with experiment. 

We wish to thank Professor H. Boersch for his con- 
tinual encouragement and stimulating discussions, and 
Professor H. Schoenebeck for many helpful discussions 
too. 

Furthermore we have to thank Professor J. M. Cow- 
ley for a critical review of the manuscript and valuable 
suggestions especially to §4. 

* In very thick impeIfect crystals incoherent elastic and in- 
elastic multiple scattering exceeds the coherent elastic scatter- 
ing within the two-beam system (Uyeda, 1968). For poly- 
crystalline gold foils for example this results in a reduction of 
the tempeIature coefficient bg for crystal thicknesses > 1000- 
1500/~ (Boersch, Just & Niedrig, 1969). 

? At high electron energies (> 300 keV) an n-beam calcula- 
tion seems to be necessary in any case because of the break- 
down of the two-beam approximation (Dupouy, Pelrier, 
Uyeda, Ayroles & Mazel, 1965; Vingsbo, 1966; Sevely, 1969). 
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Lorentz and Orientation Factors in Fiber X-ray Diffraction Analysis 

BY R.J. CELLA, BYUNGKOOK LEE* AND R. E. HUGHES 

Department of  Chem&try, Cornell University, Ithaca, New York 14850, U.S.A. 

(Received 1 April 1969) 

The application of a general formulation of the Lorentz factor for any distribution of crystallite orien- 
tations to a uniaxial fiber structure reveals that current practice, which involves the use of a standard 
single-crystal rotation factor, is inadequate. An analysis is plesented which eliminates the need for a 
detailed knowledge of the distribution function and which can be applied to measured peak intensities. 
The resulting expressions significantly improved the agreement between sets of experimental test data. 

The Lorentz factor is applied to X-ray diffraction in- 
tensity data to account for the fact that not all sets of 
crystal planes have the same opportunity to diffract 
the incident beam. The form the factor takes depends 
not only on the kinematics of the diffraction system 
but also upon the nature of the crystalline sample. For 

* Present address: Department of Molecular Biology and 
Biophysics, Yale University, New Haven, Connecticut 06520, 
U.S.A. 

single-crystal rotation techniques this geometric factor 
is a measure of the relative amount of time different 
sets of planes spend in the diffraction position or, al- 
ternatively, the relative amounts of time the corres- 
ponding reciprocal lattice points take in passing 
through the Ewald sphere. For stationary powder 
methods, it is simply the fractional number of recip- 
rocal lattice points which lie on the surface of the 
Ewald sphere. 


